Exponents Cheat Sheet

Table of Contents

The basics of exponents

Reads as “a to the m power”
Exponents description
\[\text{Example: }2^{3} = 8 \quad \text{two to the third power equals eight}\]

Go back

Power of zero (0) rule

\[\begin{split} a^{0} &= 1 \\ \\ \text{Example: }3^{0} &= 1 \end{split}\]

Go back

Power of zero (1) rule

\[\begin{split} a^{1} &= a \\ \\ \text{Example: }3^{1} &= 3 \end{split}\]

Go back

Negative exponent rule

\[\begin{split} a^{-m} &= \frac{1}{a^{m}} \\ \\ \text{Example: }x^{-3} &= \frac{1}{x^{3}} \\ 3^{-2} &= \frac{1}{3^{2}} \end{split}\]

Go back

Fraction to a negative exponent rule

\[\begin{split} \left ( \frac{a}{b} \right )^{-n} &= \left ( \frac{b}{a} \right )^{n} = \frac{b^{n}}{a^{n}} \\ \\ \text{Example: }\left ( \frac{x}{y} \right )^{-5} &= \left ( \frac{y}{x} \right )^{5} = \frac{y^{5}}{x^{5}} \\ \left ( \frac{2}{4} \right )^{-5} &= \left ( 0.5 \right )^{-5} = 32 \\ \left ( \frac{4}{2} \right )^{5} &= \left ( 2 \right )^{5} = 32 \\ \frac{4^{5}}{2^{5}} &= \frac{1024}{32} = 32 \end{split}\]

Go back

Product rule

\[\begin{split} a^{m} \cdot a^{n} &= a^{m+n} \\ \\ \text{Example: }x^{2} \cdot x^{3} &= x^{2+3} = x^{5} \\ 2^{2} \cdot 2^{3} &= 4 \cdot 8 = 32 \\ 2^{5} &= 32 \end{split}\]

Go back

Quotient rule

\[\begin{split} \frac{a^{m}}{a^{n}} &= a^{m-n} \\ \\ \text{Example: }\frac{x^{5}}{x^{3}} &= x^{5-3} = x^{2} \\ \frac{2^{5}}{2^{3}} &= \frac{32}{8} = 4 \\ 2^{2} &= 4 \end{split}\]

Go back

Power of a product rule

\[\begin{split} (a \cdot b)^{m} &= a^{m} \cdot b^{m} \\ \\ \text{Example: }(x \cdot y)^{3} &= x^{3} \cdot y^{3} \\ (2 \cdot 4)^{3} &= 8^{3} = 512 \\ 2^{3} = 8 \text{, } 4^{3} &= 64 \text{, } 8 \cdot 64 = 512 \end{split}\]

Go back

Power to a power rule

\[\begin{split} \left (a^{m} \right )^{n} &= a^{m \cdot n} \\ \\ \text{Example: }\left (x^{2} \right )^{3} &= x^{2 \cdot 3} = x^{6} \\ \left (2^{2} \right )^{3} &= 2^{6} = 64 \\ \left (2^{2} \right )^{3} &= 4^{3} = 64 \end{split}\]

Go back

Power of a quotient rule

\[\begin{split} \left (\frac{a}{b} \right )^{m} &= \frac{a^{m}}{b^{m}} \\ \\ \text{Example: }\left (\frac{x}{y} \right )^{3} &= \frac{x^{3}}{y^{3}} \\ \left (\frac{4}{2} \right )^{3} &= \frac{4^{3}}{2^{3}} = \frac{64}{8} = 8 \\ \left (\frac{4}{2} \right )^{3} &= 2^{3} = 8 \end{split}\]

Go back

Power of a fraction rule

\[\begin{split} a^{\frac{m}{n}} &= \left ( a^{\frac{1}{n}} \right )^{m} = \left ( a^{m} \right )^{\frac{1}{n}} \\ \\ \text{Example: } x^{\frac{2}{3}} &= \left ( x^{\frac{1}{3}} \right )^{2} = \left ( x^{2} \right )^{\frac{1}{3}} \\ 9^{\frac{4}{2}} &= \left ( 9^{\frac{1}{2}} \right )^{4} = \left ( 3 \right )^{4} = 81 \\ 9^{\frac{4}{2}} &= \left ( 9^{4} \right )^{\frac{1}{2}} = \left ( 6561 \right )^{\frac{1}{2}} = 81 \end{split}\]

Go back

Reference:
https://tutorial.math.lamar.edu/Extras/CheatSheets_Tables.aspx

Leave a Reply

Ad Blocker Detected

Dear user, Our website provides free and high quality content by displaying ads to our visitors. Please support us by disabling your Ad blocker for our site. Thank you!

Refresh