Algebra Cheat Sheet

Table of Contents

Basic Properties & Facts

Factoring and Solving

Functions and Graphs

Common Algebraic Errors


Arithmetic Operations

\[ \begin{split}
ab+ac &= a \left(b+c \right)\\
\\
\frac{\left( \frac{a}{b} \right)}{c} &= \frac{a}{bc}\\
\\
\frac{a}{b} + \frac{c}{d} &= \frac{ad+bc}{bd}\\
\\
\frac{a-b}{c-d} &= \frac{b-a}{d-c}\\
\\
\frac{ab+ac}{a} &= b+c \text{, } a \neq 0\\
\\
a \left(\frac{b}{c} \right)  &= \frac{ab}{c}\\
\\
\frac{a}{\left ( \frac{b}{c} \right )} &= \frac{ac}{b}\\
\\
\frac{a}{b} – \frac{c}{d} &= \frac{ad – bc}{bd}\\
\\
\frac{a+b}{c} &= \frac{a}{c} + \frac{b}{c}\\
\\
\frac{\left( \frac{a}{b} \right)}{\left( \frac{c}{d} \right)} &= \frac{ad}{bc}
\end{split} \]

Go back

Exponent Properties

\[ \begin{split}
a^{n}a^{m} &= a^{m+n} \\
\\
\left ( a^{n} \right )^{m} &= a^{nm} \\
\\
\left ( ab \right )^{n} &= a^{n}b^{n} \\
\\
a^{-n} &= \frac{1}{a^{n}} \\
\\
\left ( \frac{a}{b} \right )^{-n} &= \left ( \frac{b}{a} \right )^{n} = \frac{b^{n}}{a^{n}} \\
\\
\frac{a^{n}}{a^{m}} &= a^{n-m} = \frac{1}{a^{m-n}} \\
\\
a^{0} &= 1 \text{, } a \neq 0 \\
\\
\left ( \frac{a}{b} \right )^{n} &= \frac{a^{n}}{b^{n}} \\
\\
\frac{1}{a^{-n}} &= a^{n}\\
\\
a^{\frac{n}{m}} &= \left ( a^{\frac{1}{m}} \right )^{n} = \left ( a^{n} \right )^{\frac{1}{m}}
\end{split} \]

Go back

Properties of Radicals

\[ \begin{split}
\sqrt[n]{a} &= a^{\frac{1}{n}} \\
\\
\sqrt[n]{ab} &= \sqrt[n]{a} \sqrt[n]{b} \\
\\
\sqrt[m]{\sqrt[n]{a}} &= \sqrt[nm]{a} \\
\\
\sqrt[n]{\frac{a}{b}} &= \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \\
\\
\sqrt[n]{a^{n}} &= a \text{, if }n \text{ is odd} \\
\\
\sqrt[n]{a^{n}} &= \left | a \right | \text{, if }n \text{ is even}
\end{split} \]

Go back

Properties of Inequalities

\[ \begin{split}
\text{If } a < b \text{ then } a+c < b+c \text{ and } a-c < b-c \\
\\
\text{If } a < b \text{ and } c > 0 \text{ then } ac < bc \text{ and } \frac{a}{c} < \frac{b}{c} \\
\\
\text{If } a < b \text{ and } c < 0 \text{ then } ac > bc \text{ and } \frac{a}{c} > \frac{b}{c}
\end{split} \]

Go back

Properties of Absolute Value

\[ \begin{split}
|a| &= \left\{\begin{matrix}
a \text{, if } a \geq 0\\
-a \text{, if } a < 0
\end{matrix}\right. \\
\\
\left | a \right | &\geq 0 \\
\\
\left | -a \right | &= \left | a \right | \\
\\
\left | ab \right | &= \left | a \right | \left | b \right | \\
\\
\left | \frac{a}{b} \right | &= \frac{\left | a \right |}{\left | b \right |} \\
\\
\left | a+b \right | &\leq \left | a \right | + \left | b \right | \text{ Triangle Inequality}
\end{split} \]

Go back

Distance Formula

\[ \begin{split}
\text{If } P_{1} = (x_{1}, y_{1}) \text{ and } P_{2} = (x_{2}, y_{2}) \text{ are two points, then the distance between them is:} \\
d \left ( P_{1}, P_{2} \right ) = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}
\end{split} \]

Go back

Complex Numbers

\[ \begin{split}
i &= \sqrt{-1}\\
\\
i^{2} &= -1 \\
\\
\sqrt{-a} &= i \sqrt{a} \\
\\
(a+bi)+(c+di) &= a+c+(b+d)i \\
\\
(a+bi)-(c+di) &= a-c+(b-d)i \\
\\
(a+bi)(c+di) &= ac-bd+(ad+bc)i \\
\\
(a+bi)(a-bi) &= a^{2} + b^{2} \\
\\
|a+bi| &= \sqrt{a^{2}+b^{2}} \quad \text{ Complex Modulus}\\
\\
\overline{(a+bi)} &= a-bi \quad \text{ Complex Conjugate}\\
\\
\overline{(a+bi)} (a+bi) &= \left | a+bi \right |^{2}
\end{split} \]

Go back

Logarithms and Log Properties

Definition
\[y = \log_{b}{x} \text{ is equivalent to } x=b^{y} \]

Example
\[ \log_{5}{125} = 3 \text{ because } 5^{3}=125 \]

Special Logarithms
\[ \begin{split}
\ln{x} &= \log_{e}{x} \quad \text{natural logarithm, where } e = 2.718281828… \\
\\
\log{x} &= \log_{10}{x} \quad \text{common logarithm}
\end{split} \]

Logarithm Properties
\[ \begin{split}
\log_{b}{b} &= 1 \\
\\
\log_{b}{1} &= 0 \\
\\
\log_{b}{b^{x}} &= x \\
\\
b^{\log_{b}{x}} &= x \\
\\
\log_{b} \left ( x^{r} \right ) &= r \log_{b}{x} \\
\\
\log_{b}{\left ( xy \right )} &= \log_{b}{x} + \log_{b}{y} \\
\\
\log_{b}{\left ( \frac{x}{y} \right )} &= \log_{b}{x} – \log_{b}{y} \\
\\
\text{The domain of } \log_{b}{x} \text{ is } x>0
\end{split} \]

Go back

Factoring Formulas

\[ \begin{split}
x^{2}-a^{2} &= \left ( x+a\right ) \left ( x-a \right ) \\
\\
x^{2} + 2ax + a^{2} &= \left ( x+a \right ) ^{2} \\
\\
x^{2} – 2ax + a^{2} &= \left ( x-a \right ) ^{2} \\
\\
x^{2}+ \left ( a+b \right ) x + ab &= \left ( x+a \right ) \left ( x+b \right ) \\
\\
x^{3}+3ax^{2}+3a^{2}x+a^{3} &= \left ( x+a \right ) ^{3} \\
\\
x^{3}-3ax^{2}+3a^{2}x-a^{3} &= \left ( x-a \right ) ^{3} \\
\\
x^{3} + a^{3} &= \left ( x+a \right ) \left ( x^{2} – ax + a^{2} \right ) \\
\\
x^{3} – a^{3} &= \left ( x-a \right ) \left ( x^{2} + ax + a^{2} \right ) \\
\\
x^{2n} – a^{2n} &= \left ( x^{n} – a^{n} \right ) \left ( x^{n} + a^{n} \right ) \\
\\
\text{If }n \text{ is odd, then:} \\
\\
x^{n} – a^{n} &= \left ( x-a \right ) \left ( x^{n-1} + ax^{n-2} + … + a^{n-1} \right ) \\
\\
x^{n} + a^{n} &= \left ( x+a \right ) \left ( x^{n-1} – ax^{n-2} + a^{2}x^{n-3} … + a^{n-1} \right )
\end{split} \]

Go back

Quadratic Formula

\[ \begin{split}
\text{Solve } ax^{2}+bx+c &= 0 \text{, } a \neq 0 \\
\\
x &= \frac{-b \pm \sqrt{\Delta}}{2a} \\
\\
\text{where } \Delta &= b^{2}-4ac \\
\\
\text{If } \Delta & < 0 \text{ the equation has two real unequal solutions} \\
\\
\text{If } \Delta & = 0 \text{ the equation has one real repeated solution} \\
\\
\text{If } \Delta & < 0 \text{ the equation has two complex solutions} \quad
\end{split} \]

Go back

Square Root Property

\[ \text{If } x^{2} = p \text{ then } x = \pm \sqrt{p} \]

Go back

Absolute Value Equations/Inequalities

\[ \begin{split}
\text{If } b \text{ is a positive number} \\
\\
|p| = b \quad & \Rightarrow \quad p = -b \text{ or } p = b \\
\\
|p| < b \quad & \Rightarrow \quad -b < p < b \\
\\
|p| > b \quad & \Rightarrow \quad p < -b \text{ or } p > b
\end{split} \]

Go back

Completing the Square

\[ \text{Solve } 2x^{2}-6x-10=0\]

1. Divide by the coefficient of x2 (which is 2 in this example):
\[x^{2} – 3x – 5 = 0\]

2. Move the constant to the other side:
\[x^{2} – 3x = 5\]

3. Take half the coefficient of x, square it and add it to both sides:
\[x^{2} – 3x + \left ( – \frac{3}{2} \right )^{2} = 5 + \left ( – \frac{3}{2} \right )^{2} = 5 + \frac{9}{4} = \frac{29}{4}\]

4. Factor the left side:
\[\left ( x – \frac{3}{2} \right )^{2}= \frac{29}{4}\]

5. Use Square Root Property:
\[x – \frac{3}{2} = \pm \sqrt{\frac{29}{4}} = \pm \frac{\sqrt{29}}{2}\]

6. Solve for x:
\[x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}\]

Go back

Constant Function

\[ y=a \quad \text{or} \quad f(x)=a\]
Graph is a horizontal line passing through the point (0, a).

Go back

Line/Linear Function

\[ y=mx+b \quad \text{or} \quad f(x)=mx+b\]
Graph is a line with point (0, b) and slope m.

Slope
Slope of the line containing the two points (x1, y1) and (x2, y2) is:
\[m = \frac{y_{2}-y_{1}}{x_{2}-x_{1}} = \frac{\text{rise}}{\text{run}}\]

Slope – intercept form
The equation of the line with slope m and y-intercept (0, b) is:
\[y=mx+b\]

Point – slope form
The equation of the line with slope m and and passing through the point (x1, y1) is:
\[y=y_{1} + m(x-x_{1})\]

Go back

Parabola/Quadratic Function

Vertex form
\[ \begin{split}
y &= a \left ( x-h \right )^{2} + k\\
f(x) &= a \left ( x-h \right )^{2} + k
\end{split} \]

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at (h, k).

General form
\[ \begin{split}
y &= ax^{2}+bx+c \\
f(x) &= ax^{2}+bx+c
\end{split} \]

The graph is a parabola that opens up if a > 0 or down if a < 0 and has a vertex at:
\[\left ( – \frac{b}{2a}, f \left ( – \frac{b}{2a} \right ) \right )\]

\[ \begin{split}
x &= ay^{2}+by+c \\
g(y) &= ay^{2}+by+c
\end{split} \]

The graph is a parabola that opens right if a > 0 or down if a < 0 and has a vertex at:
\[\left ( g \left ( – \frac{b}{2a} \right ), – \frac{b}{2a} \right )\]

Go back

Circle

\[\left ( x-h \right )^{2} + \left ( y-k \right )^{2} = r^{2}\]

Graph is a circle with radius r and centre (h, k).

Go back

Ellipse

\[\frac{\left ( x-h \right )^{2}}{a^{2}} + \frac{\left ( y-h \right )^{2}}{b^{2}} = 1\]

Graph is an ellipse with centre (h, k) with vertices a units right/left from the centre and vertices b units up/down from the centre.

Go back

Hyperbola

Left-right vertices
\[\frac{\left ( x-h \right )^{2}}{a^{2}} – \frac{\left ( y-h \right )^{2}}{b^{2}} = 1\]

Graph is a hyperbola that opens left and right, has a centre at (h, k), vertices a units left/right of centre and asymptotes that pass through centre with slope:
\[\pm \frac{b}{a}\]

Up-down vertices
\[\frac{\left ( y-k \right )^{2}}{b^{2}} – \frac{\left ( x-h \right )^{2}}{a^{2}} = 1\]

Graph is a hyperbola that opens up and down, has a centre at (h, k), vertices b units up/down from the centre and asymptotes that pass through centre with slope:
\[\pm \frac{b}{a}\]

Go back

Error and Reason/Correct/Justification/Example

\[\begin{matrix}
\mathbf{Error} & \quad \mathbf{Reason/Correct/Justification/Example}\\ \\
\frac{2}{0} \neq 0 \text{ and } \frac{2}{0} \neq 2 & \text{Division by zero is undefined!} \\ \\
-3^{2} \ne 9 & -3^{2}=-9 \text{, } (-3)^{2}=9 \text{ Watch parenthesis!} \\ \\
\left ( x^{2} \right )^{3} \ne x^{5} & \left ( x^{2} \right )^{3} = x^{2}x^{2}x^{2} = x^{6} \\ \\
\frac{a}{b+c} \ne \frac{a}{b} + \frac{a}{c} & \frac{1}{2} = \frac{1}{1+1} \ne \frac{1}{1}+\frac{1}{1} = 2 \\ \\
\frac{1}{x^{2}+x^3} \ne x^{-2} + x^{-3} & \text{A more complex version of the previous error} \\ \\
\frac{\not{a}+bx}{\not{a}} \ne 1+bx & \frac{a+bx}{a}=\frac{a}{a}+\frac{bx}{a}=1+\frac{bx}{a} \\
\quad & \text{Beware of incorrect canceling!} \\ \\
-a(x-1) \ne -ax-a & -a(x-1) = -ax+a \\
\quad & \text{Make sure you distribute the ”-”!} \\ \\
\left ( x+a \right )^{2} \ne x^{2}+a^{2} & \left ( x+a \right )^{2}=\left ( x+a \right )\left ( x+a \right )=x^{2}+2ax+x^{2} \\ \\
\sqrt{x^{2}+a^{2}} \ne x+a & 5 = \sqrt{25} = \sqrt{3^{2}+4^{2}} \ne \sqrt{3^{2}} + \sqrt{4^{2}} = 3+4 =7 \\ \\
\sqrt{x+a} \ne \sqrt{x} + \sqrt{a} & \text{See previous error.} \\ \\
\left ( x+a \right )^{n} \ne x^{n}+a^{n} & \text{More general versions of previous three errors.} \\
\sqrt[n]{x+a} \ne \sqrt[n]{x} + \sqrt[n]{a} & \quad \\ \\
2 \left ( x+1 \right )^{2} \ne \left ( 2x+2 \right )^{2} & 2 \left ( x+1 \right )^{2} = 2 \left ( x^{2}+2x+1 \right ) = 2x^{2} + 4x + 2 \\
\quad & \left ( 2x+2 \right )^{2} = 4x^{2}+8x+4 \\
\quad & \text{Square first then distribute!} \\ \\
\left ( 2x+2 \right )^{2} \ne 2 \left ( x+1 \right )^{2} & \text{See previous example.} \\
\quad & \text{You can not factor out a constant,} \\
\quad & \text{if there is a power on the parenthesis!} \\ \\
\sqrt{-x^{2}+a^{2}} \ne – \sqrt{x^{2}+a^{2}} & \sqrt{-x^{2}+a^{2}} = \left ( -x^{2}+a^{2} \right )^{\frac{1}{2}} \\
\quad & \text{Now see the previous error.} \\ \\
\frac{a}{\left ( \frac{b}{c} \right ) } \ne \frac{ab}{c} & \frac{a}{\left ( \frac{b}{c} \right )} = \frac{\left ( \frac{a}{1} \right )}{\left ( \frac{b}{c} \right )} = \left ( \frac{a}{1} \right ) \left ( \frac{c}{b} \right ) = \frac{ac}{b}\\ \\
\frac{\left ( \frac{a}{b} \right )}{c} \ne \frac{ac}{b} & \frac{\left ( \frac{a}{b} \right )}{c} = \frac{\left ( \frac{a}{b} \right )}{\left ( \frac{c}{1} \right )} = \left ( \frac{a}{b} \right ) \left ( \frac{1}{c} \right ) = \frac{a}{bc}
\end{matrix}\]

Go back

Reference:
https://tutorial.math.lamar.edu/Extras/CheatSheets_Tables.aspx

Leave a Reply

Ad Blocker Detected

Dear user, Our website provides free and high quality content by displaying ads to our visitors. Please support us by disabling your Ad blocker for our site. Thank you!

Refresh