This article is the first part from a series of articles / tutorials in which we are going to discuss about Mild Hybrid Electric Vehicles (MHEVs). The series is scheduled to have six parts, each one focusing on some key aspects of the MHEVs:
- MHEV – introduction
- MHEV – topology (architecture)
- MHEV – main components
- MHEV – electrical architecture
- MHEV – control functions
- MHEV – examples
In this first part, we are going to discuss about the major trends in automotive industry, why do we need mild hybrids and where MHEVs position themselves in the big picture.
Automotive megatrends
Automotive industry is very dynamic, with innovative technologies coming in at a very fast pace. There are several reasons for which the technology inside a vehicle is changing continuously, with every new model launched into market.
The development of the MHEVs is mainly driven by two factors:
- Efficiency: CO2 (carbon dioxide) fleet emission targets
- Fun to Drive: increasing demand of the vehicle’s dynamic performance
Regarding CO2 emissions limits and targets, in many countries around the globe, there are regulations in place for the amount of CO2 produced by road vehicles.
Carbon dioxide (CO2) emissions are gaining importance because they contribute to the greenhouse effect of the planet and impact the air quality. The International Council on Clean Transportation (ICCT) has published the current and future standards for fleet CO2 emissions (see image above).
From 2021 onward, the average fleet CO2 emissions, in European Union, will be limited to 95 g of CO2 per km. Since CO2 emission are directly related to fuel consumption, this translates in an average fuel consumption rate of about 58.8 mpg (gasoline engines) or 65.3 mpg (diesel).
Vehicle manufacturers (OEMs) have to ensure that the CO2 emission average of their new vehicle sales will meet these levels. Individual vehicles can be above or below the limit, but the fleet average must be below or equal to the limit. If the car manufacturers exceed the fleet (average) limits, they’ll have to pay fines.
The conclusion is that, in order to reduce CO2 emissions, the engine should have lower fuel consumption. Aftertreatmet systems will not help this time, because they only transform the nature of chemical components in the exhaust gas while maintaining the total mass of molecules.
The only way towards meeting the CO2 limits for 2020 onward is to be more energy efficient. Therefore, there are three main directions for fuel economy improvements:
- reduction of weight and losses (drag)
- increase of powertrain efficiency
- electrical hybridization of the powertrain
The Automotive Council from UK has come up with a roadmap of the present and future automotive technologies, which have the final purpose of CO2 emissions reduction. As you can see, the improvements on the vehicle and internal combustion engine efficiency are performed in parallel with the electrical hybridization of the powertrain.
For the vehicle manufacturers there is a certainty that, by 2020, a significant share of their vehicles models will be equipped with hybrid or pure electric powertrains. This is the only feasible way to achieve the average CO2 emissions limits.
Another significant major trend in the automotive industry is the fun to drive. This translates into higher expectations of the customers with regards to the dynamic performance of the new vehicle models.
According to Getrag (owned by Magna), the ratio between the energy density of the powertrain and the average acceleration of the vehicle has risen constantly over the years. Customers expect from their new vehicles:- increased launch performance
- boosting
- immediate reaction
Due to its fast torque response, an electric motor is the perfect candidate for these requirements. Coupled with an internal combustion engine, the electric motor can provide torque assistance and torque boosting to enhance the overall dynamic performance of the powertrain.
MHEV definition
The general definition of a hybrid electric vehicle is the following: a hybrid electric vehicle is a vehicle with at least two sources of energy, one of each is electrical and reversible. For a good understanding of the types of hybrid electric vehicles read the article Understanding micro, mild, full and plug-in hybrid electric vehicles.
Apparently it’s easy to define a Mild Hybrid Electric Vehicle (MHEV), but most of the sources give an incomplete definition. When looking into the types of hybrid electric vehicles, we need to consider the following key aspects:
- the electrical power available (e. g. 15 kW)
- the voltage of the high voltage battery (e.g. 48 V)
- the fuel consumption / CO2 reduction potential (e.g. 15 %)
- the functions performed by the electric machine (e.g. torque boost)
A Mild Hybrid Electric Vehicle (MHEV) is defined by a combination of the key aspects defined above.
where the vehicle segments are:
A – Subcompact cars
B – Compact cars
C – medium cars
D – Large cars
E – Premium cars
According to Continental, a MHEV is defined by:
- an available electrical power between 10 – 20 kW
- a high voltage battery of 48 V
- a fuel consumption / CO2 saving potential between 13 – 22 % (compared with a conventional vehicle)
Cost is another major factor which impacts the level of electrical hybridization of a vehicle. Since the introduction of the electrical components comes with a higher cost, the level of hybridization depends on the vehicle segment. Smaller, cost competitive vehicles will have the minimum level of electrical hybridization integration, because of the impact on the overall price of the vehicle.
In the MHEV automotive market, there are currently two major categories for the operating value of the high voltage network: 48 V and up to 160 V. The focus is shifting towards the 48V solution, which will become the standard solution for MHEV. A mild hybrid electric vehicle is also defined function of the operating modes that can be performed. In the table below you can see a synthesis of the different levels of vehicle hybridization, function of their energy properties and control functions (operating modes).
Micro Hybrid | MHEV | HEV | PHEV | EV | |||
Topology | Regular starter | BiSG | TiMG | CiSG | Powersplit | Powersplit / Parallel | Direct Drive |
Electric power [kW] | 2-4 | 10-15 | < 21 | 15-20 | 25-60 | 40-100 | > 60 |
Operating voltage [V] | 12 | 48 | 48 | < 160 | 150-350 | < 400 | < 450 |
Cold engine cranking | Yes | No | Yes | Yes | Yes | Yes | Yes |
Idle Stop & Start | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Moving Stop & Start | Optional | Optional | Yes | Yes | Yes | Yes | Yes |
Engine load shift | Optional | Yes | Yes | Yes | Yes | Yes | Yes |
Torque assist (fill) | No | Yes | Yes | Yes | Yes | Yes | Yes |
Torque boost | No | Yes | Yes | Yes | Yes | Yes | Yes |
Sailing / Coasting | No | Optional | Yes | Yes | Yes | Yes | Yes |
Energy recuperation | Optional | Yes | Yes | Yes | Yes | Yes | Yes |
Brake regeneration | No | Optional | Yes | Yes | Yes | Yes | Yes |
Electric driving / creep | No | No | Optional | No | Yes | Yes | Yes |
External charging | No | No | No | No | No | Yes | Yes |
Legend:
BiSG – Belt-integrated Starter Generator (engine side)
TiMG – Transmission-integrated Motor Generator (transmission side)
CiSG – Crankshaft-integrated Starter Generator (between engine and transmission)
As you can see in the table above, there are different “flavours” of MHEVs, the main difference being the topology (architecture) and the bus voltage. Depending on the positioning of the electric machine (engine side, between engine and transmission or transmission side) different control function can be performed. The TiMG MHEV topology has the highest flexibility in terms of control functions / driving modes, being similar to a full hybrid electric vehicle (HEV).
Becasue of their advantages, 48V MHEV systems are entering the mass market. The biggest advantages of the 48V technology are: the relatively simple integration in the existing vehicle architectures and the high efficiency of the components.
A 48V MHEV system has four main components:
- electric machine (BiSG or TiMG)
- inverter (usually integrated with the electric machine)
- DCDC converter
- high voltage (48 V) battery
To minimize the integration cost of a 48V hybrid system, the impact on the conventional vehicle and transmission architecture should be kept to a minimum. The BiSG MHEV system introduces the fewest changes on the existing vehicle architecture, therefore is the most cost effective hybridization solution.
According to Continental, in the foreseeable future, there will be a continuous increase of market share for hybrid and pure electric vehicles (PHEV and pure EV). The biggest increase is expected to come from the 48V MHEV architectures, which will reach around 25 million units sold, until the year 2030.
For any questions, observations and queries regarding this article, use the comment form below.
Don’t forget to Like, Share and Subscribe!
Jenny Ma
Very informative! Helpful to me as a new comer in automotive industry.
Wolfgang
Can the P0 hybrid configuration be regarded as a series hybrid ?
Anthony Stark
No, series hybrid means that the wheel torque is only provided by the electric machine, not by the internal combustion engine (which is only used as a generator together with another electric machine).
See this article for more info:
https://x-engineer.org/automotive-engineering/vehicle/hybrid/types-hybrid-electric-vehicles-hev/
Niko Hantula
Hi,
I am writing my bachelors thesis about hybrid powertrains. I was interested if I could use this article as a reference? Of course I will credit you in the sources. I was also wondering do you remember the article that you took this from (as I would be interested to quote or credit it somehow):
According to Getrag (owned by Magna), the ratio between the energy density of the powertrain and the average acceleration of the vehicle has risen constantly over the years. Customers expect from their new vehicles:
increased launch performance
boosting
immediate reaction
Regards, Niko
Dan Collins
Good to know about the functions of MHEV. This is so informative. i can recommend to my friends who are asking about this topic. Thank you for posting this.
Walter Ferrario
Hi Anthony,
Great Job. Before reading this article I thought that the only difference between MHEV and HEV is that the first one is not able to drive the car in electrical mode only, giving the motor just a support to ICE. Now I see from your table that if the option of electric driving is used on MHEV – TiMG the system gets all the features of an HEV. Definitely, what I understand is that – in this case – the difference between an MHEV and HEV is just the battery voltage and the range. Isnt’it? Thanks, bye. Walter.
Anthony Stark
Hi Walter,
Now it is harder to distinguish between MHEV and HEV since there are P3/P4 48V MHEVs which can do EV driving up to 5 kph, at least at a concept phase. So the difference between MHEV and HEV is given by multiple factors as: power of electric machine, battery voltage and EV range. Regards, Anthony.
Michal Sztorc
Hi, thank You for great work.
In the first chapter about types of hybrid powertrain (and also here) You wrote about two types of MHEV depending of where the electric machine is (BiSG or CiSG),
But in the table You introduced third type TiMG. TiMG came out of nowhere.
So what is this TiMG, is this a popular standard compared to BiSG and CiSG? Is it used by car manufacturers?
Regards
M
Anthony Stark
Hi Michal,
BiSG is a P0 MHEV architecture, CiSG is a P1 and TiSG is a P3. The names BiSG, CiSG and TiSG are just for the electric machines to distinguish between different architectures.
For reference please read:
https://x-engineer.org/automotive-engineering/vehicle/hybrid/mild-hybrid-electric-vehicle-mhev-architectures/
Yosuke Shii
Hello. Regarding to the article, I would like to ask you some question.
1) In this article you are mentioned about only 48V BSG. However are there any “12V BSG” structure in current market ?
2) If there are 12V BSG, are there any possibility in the future trend?
3) Concerning to the cost-efficiency, is it better to use only generator compare to use 12V BSG as far as 12V micro hybrid?
I really appreciate to you for answering these question at your convenience.
Anthony Stark
Hi Yosuke,
1. I think there are 12V solutions but they can’t be regarded as MHEV since the electric machine power is low.
2. I don’t think so due to low power of a 12V electric machine.
3. Having a 12V BSG brings some advantages, like fast Stop&Start, better energy harvesting, etc. but you would still need a pinion starter for cold engine start.
Anthony Stark
Questions received over social media which might be interesting for others to see:
1. Is the ICE charging the high voltage (48V) battery and the low voltage battery (12V) is charged only through step-down operation (buck mode) between the two buses (48V to 12V)?
2. Is the kinetic energy of all MHEVs stored in the high-voltage battery (48V)?
3. regarding the Idle stop/start function, is there any difference between the first ignition done with the key switch and the engine start at green light (for example)? in 12V and 48V MEHVs, does the ignition use the 48V or the 12V battery?
4. In the third article, it is written that in BisG MHEV architecture the electric performance is : Max power 12-14kW and continuous power is 2.5-3.5kW.
a.What are the scenarios which require max power? How frequent are these scenarios?
5.My last question is kinda vague, but i’ll try to make it clear. I am very interested in the DC-DC converter linking the two batteries. Is the converter supposed to actually supply the power for the various load or is it used only to recharge the batteries?
Any additional information you might have regarding the DCDC converter or its controller will be of great help to me since i haven’t found any specific definitions regarding the requirement of the converter and its controller.
I have enjoyed reading your articles very much!
Thank you in advance for your reply!
Answers:
1. Yes, you are right. The 12V battery is always charged via DCDC from the 48V system. The charging of the 48V battery can be done in two ways: with the engine or via kinetic energy recuperation.
2. Yes
3. Depending on the vehicle and MHEV architecture. If the MHEV is a P0 architecture, with the 48V electric machine on the accessory belt, at cold engine start, due to high load/torque, it can slip. In this case some manufacturers equip the vehicles also with a 12V starter which is used only for cold start. This solution is also beneficial because there is a redundant starting device in case of a BISG failure.
4. Max power can be delivered during transient phases, when the vehicle accelerates, for 2-3 s. In these phases the electric machine can compensate the torque lag of the internal combustion engine. The frequency of this phases depends on how the driver drives but is also limited by the availability of electrical energy.
5. The DCDC makes sure that the 12V systems is kept alive. This means that it needs to do both: charge the 12V battery if its depleted and supply energy to other components when the vehicle is running.