What are radicals in maths

In this tutorial we are going to learn about radicals. In mathematics a radical is described as:

\[\begin{equation} \begin{split} \bbox[#FFFF9D]{\sqrt[n]{x}} \end{split} \end{equation}\]

where:

  • n is a positive integer, greater than 1
  • x is a real number

The number n is called the order/index of the radical, the number x is called the radicand, and the symbol  is called the radical.

The radical can be written as a rational exponent as follows:

\[\begin{equation} \begin{split} \bbox[#FFFF9D]{\sqrt[n]{x}=x^{\frac{1}{n}}} \end{split} \end{equation}\]

There are two special cases of radicals:

  • square root, when the order of the radical is 2:
\[\begin{equation} \begin{split} \sqrt{x} \end{split} \end{equation}\]
  • cubic root, when the order of the radical is 3:
\[\begin{equation} \begin{split} \sqrt[3]{x} \end{split} \end{equation}\]

There a two things to keep in mind about the square root:

  • the index of the radical is not written down, this mean that every radical without the index is a square root
  • the radicand x is always a positive number, because there is no real number raised at the power of two which can result in a negative number (except when it is a complex number)

In the table below we can see the main properties of radicals together with some examples. Bear in mind that, since a radical can be written as a exponent, all exponents (integer or rational) properties are valid also for radicals.

# Property Examples
1 \[ \begin{equation*} \begin{split}
\sqrt[n]{x^n} = x
\end{split} \end{equation*} \]
\[ \begin{equation*} \begin{split}
\sqrt{25} = \sqrt{5^2} = 5\\
\sqrt[3]{27} = \sqrt[3]{3^3} = 3\\
\sqrt[4]{16} = \sqrt[4]{2^4} = 2
\end{split} \end{equation*} \]
2 \[ \begin{equation*} \begin{split}
\sqrt[n]{x \cdot y} = \sqrt[n]{x} \cdot \sqrt[n]{y}
\end{split} \end{equation*} \]
\[ \begin{equation*} \begin{split}
\sqrt{9 \cdot 4} =& \sqrt{36} = 6\\
\sqrt{9 \cdot 4} =& \sqrt{9} \cdot \sqrt{4} = 3 \cdot 2 = 6
\end{split} \end{equation*} \]
3 \[ \begin{equation*} \begin{split}
\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}
\end{split} \end{equation*} \]
\[ \begin{equation*} \begin{split}
\sqrt{\frac{36}{4}} =& \sqrt{9} = 3\\
\sqrt{\frac{36}{4}} =& \frac{\sqrt{36}}{\sqrt{4}} = \frac{6}{2} = 3
\end{split} \end{equation*} \]

The radical function is basically a rational exponent. A radical can be easily be written as a rational exponent and vice-versa. Example:

\[ \begin{equation*} \begin{split}
x^{\frac{m}{n}}=\left (x^{\frac{1}{n}} \right)^m = \left (\sqrt[n]{x} \right)^m
\end{split} \end{equation*} \]

which is the same as:

\[ \begin{equation*} \begin{split}
x^{\frac{m}{n}}=\left (x^{m} \right)^{\frac{1}{n}} = \sqrt[n]{x^m}
\end{split} \end{equation*} \]

Remember that the radical of the sum of two numbers is not equal to the sum of the radical of each number. The same rule apply for the difference:

\[ \begin{equation*} \begin{split}
\sqrt[n]{x+y} &\neq \sqrt[n]{x} + \sqrt[n]{y}\\
\sqrt[n]{x-y} &\neq \sqrt[n]{x} – \sqrt[n]{y}
\end{split} \end{equation*} \]

Example:

\[5=\sqrt{25}=\sqrt{9+16}\neq\sqrt{9}+\sqrt{16}=3+4=7\]

With the properties in mind we are going to solve a simplification problem. Simplify the mathematical expressions below assuming that x and y are positive numbers:

\[\sqrt[4]{16 \cdot x^8 \cdot y^2}\]

Solution:

\[ \begin{equation*} \begin{split}
\sqrt[4]{16 \cdot x^8 \cdot y^2} &= \sqrt[4]{16} \cdot \sqrt[4]{x^8} \cdot \sqrt[4]{y^2}\\
&=2^{\frac{4}{4}} \cdot x^{\frac{8}{4}} \cdot y^{\frac{2}{4}}\\
&=2 \cdot x^{2} \cdot y^{\frac{1}{2}}\\
&=2 \cdot x^{2} \cdot \sqrt{y}
\end{split} \end{equation*} \]

For reference, in order to have a quick access resource on radicals properties and examples, download the image below:

Radicals Properties and Examples

Image: Radicals Properties and Examples

For any questions or observations regarding this tutorial please use the form below.

Don’t forget to Like, Share and Subscribe!

Leave a Reply

Ad Blocker Detected

Dear user, Our website provides free and high quality content by displaying ads to our visitors. Please support us by disabling your Ad blocker for our site. Thank you!

Refresh