Even if it’s capable of very complex numerical computations, Scilab can be used only as a simple or scientific calculator. The most common functions are those related to trigonometry, logarithms and basic statistics. In the table below the basic mathematical functions defined in Scilab are explained.
General functions
Mathematical function | Scilab function | Mathematical formula |
square root | sqrt(x) | \[ \begin{equation*} \begin{split} \sqrt{x} \end{split} \end{equation*} \] |
exponential | exp(x) | \[ \begin{equation*} \begin{split} e^x \end{split} \end{equation*} \] |
natural algorithm | log(x) | \[ \begin{equation*} \begin{split} ln(x) \end{split} \end{equation*} \] |
decimal logarithm | log10(x) | \[ \begin{equation*} \begin{split} log(x) \end{split} \end{equation*} \] |
absolute value | abs(x) | \[ \begin{equation*} \begin{split} \left | x \right | \end{split} \end{equation*} \] |
Trigonometry functions
Mathematical function | Scilab function | Mathematical formula |
sine | sin(x) | \[ \begin{equation*} \begin{split} sin(x), x \hspace{2mm} in \hspace{2mm} radians \end{split} \end{equation*} \] |
cosine | cos(x) | \[ \begin{equation*} \begin{split} cos(x), x \hspace{2mm} in \hspace{2mm} radians \end{split} \end{equation*} \] |
tangent | tan(x) | \[ \begin{equation*} \begin{split} tg(x), x \hspace{2mm} in \hspace{2mm} radians \end{split} \end{equation*} \] |
cotangent | cotg(x) | \[ \begin{equation*} \begin{split} ctg(x), x \hspace{2mm} in \hspace{2mm} radians \end{split} \end{equation*} \] |
arc-sine | asin(x) | \[ \begin{equation*} \begin{split} y = arcsin(x), x = sin(y) \end{split} \end{equation*} \] |
arc-cosine | acos(x) | \[ \begin{equation*} \begin{split} y = arccos(x), x = cos(y) \end{split} \end{equation*} \] |
arc-tangent | atan(x) | \[ \begin{equation*} \begin{split} y = arctg(x), x = tg(y) \end{split} \end{equation*} \] |
arc-cotangent | acot(x) | \[ \begin{equation*} \begin{split} y = arcctg(x), x = ctg(y) \end{split} \end{equation*} \] |
hyperbolic sine | sinh(x) | \[ \begin{equation*} \begin{split} sinh(x) = \frac{e^x – e^{-x}}{2} \end{split} \end{equation*} \] |
hyperbolic cosine | cosh(x) | \[ \begin{equation*} \begin{split} cosh(x) = \frac{e^{2 \cdot x} + 1}{2 \cdot e^x} \end{split} \end{equation*} \] |
hyperbolic tangent | tanh(x) | \[ \begin{equation*} \begin{split} tanh(x) = \frac{e^{2 \cdot x} – 1}{e^{2 \cdot x} + 1} \end{split} \end{equation*} \] |
hyperbolic cotangent | coth(x) | \[ \begin{equation*} \begin{split} coth(x) = \frac{e^{2 \cdot x} + 1}{e^{2 \cdot x} – 1} \end{split} \end{equation*} \] |
sinc | sinc(x) | \[ \begin{equation*} \begin{split} sinc(x) = \frac{sin(x)}{x} \end{split} \end{equation*} \] |
It is important to keep in mind that the argument for the trigonometric functions should be in radians. To transform from degrees in radians we use the following formula:
\[ \begin{equation*} \begin{split}\alpha [rad] = \alpha [^{\circ}] \cdot \frac{\pi}{180^{\circ}}
\end{split} \end{equation*} \]
Example, the sine
function of an angle of 90°:
-->sin(90 * %pi/180) ans = 1. -->
Statistical functions
Mathematical function | Scilab function | Description |
minimum | min(x) | \[ \begin{equation*} \begin{split} x = [x_1, x_2, …] \end{split} \end{equation*} \] |
maximum | max(x) | \[ \begin{equation*} \begin{split} x = [x_1, x_2, …] \end{split} \end{equation*} \] |
round | round(x) | \[ \begin{equation*} \begin{split} outputs \hspace{2mm} the \hspace{2mm} closest \hspace{2mm} integer \hspace{2mm} of \hspace{2mm} x \end{split} \end{equation*} \] |
ceil | ceil(x) | \[ \begin{equation*} \begin{split} outputs \hspace{2mm} the \hspace{2mm} integer \hspace{2mm} part \hspace{2mm} of \hspace{2mm} x + 1 \end{split} \end{equation*} \] |
floor | floor(x) | \[ \begin{equation*} \begin{split} outputs \hspace{2mm} the \hspace{2mm} integer \hspace{2mm} part \hspace{2mm} of \hspace{2mm} x \end{split} \end{equation*} \] |
Example:
-->min([1 2 3]) + max([-2 0 1]) + round(0.6) + ceil(0.1) + floor(1.9) ans = 5. -->
In order to get used to Scilab basic functions try the examples below:
\[ \begin{equation*} \begin{split}e^2 + \left ( \frac{\pi}{3}\right)^3 + ln(7) – log_{10} 5 + \sqrt{18^4}
\end{split} \end{equation*} \]
-->exp(2)+(%pi/2)^3+log(7)-log10(5)+sqrt(18^4) ans = 336.51178 -->\[ \begin{equation*} \begin{split}
sinc(x) + tan(x)^3 – 5 \cdot \frac{ctg(x)}{arccos(x)} – cosh(x), \hspace{2mm} x = \frac{\pi}{5}
\end{split} \end{equation*} \]
-->x=%pi/5 x = 0.6283185 -->sinc(x)+tan(x)^3-5*(cotg(x)/acos(x))-cosh(x) ans = - 7.60525 -->
The best way to get use with the Scilab basic functions syntax, is to try a couple of mathematical expressions which should include basic, trigonometry and statistical functions. After some practice names and arguments of the functions will be easy to remember and use.
For any questions, observations and queries regarding Scilab variables use the comment form below.
Don’t forget to Like, Share and Subscribe!
Tara shankar Mohapatra
can I have various function used in programming examples