Arithmetic Operations Cheat Sheet

Table of Contents

Commutative property

Addition
\[a+b=b+a\]

Multiplication
\[a \cdot b=b \cdot a\]

Go back

Associative property

Addition
\[a + \left ( b+c \right ) = \left ( a+b \right ) +c\]

Multiplication
\[a \cdot \left ( b \cdot c \right ) = \left ( a \cdot b \right ) \cdot c\]

Go back

Distributive property

\[a \cdot \left ( b+c \right ) = a \cdot b + a \cdot c\]

Go back

Identity element

Addition (0 is the identity element)
\[a+0=a\]

Multiplication (1 is the identity element)
\[a \cdot 1 = a\]

Go back

Inverse element

Addition (-a is the inverse element)
\[a + \left ( -a \right ) = 0\]

Multiplication (1/a is the inverse element)
\[a \cdot \frac{1}{a} = 1\]

Go back

Other properties

\[ \begin{split}
\frac{\left( \frac{a}{b} \right)}{c} &= \frac{a}{bc}\\
\\
\frac{a}{b} + \frac{c}{d} &= \frac{ad+bc}{bd}\\
\\
\frac{a-b}{c-d} &= \frac{b-a}{d-c}\\
\\
\frac{ab+ac}{a} &= b+c \text{, } a \neq 0\\
\\
a \left(\frac{b}{c} \right)  &= \frac{ab}{c}\\
\\
\frac{a}{\left ( \frac{b}{c} \right )} &= \frac{ac}{b}\\
\\
\frac{a}{b} – \frac{c}{d} &= \frac{ad – bc}{bd}\\
\\
\frac{a+b}{c} &= \frac{a}{c} + \frac{b}{c}\\
\\
\frac{\left( \frac{a}{b} \right)}{\left( \frac{c}{d} \right)} &= \frac{ad}{bc}
\end{split} \]

Go back

Reference:
https://tutorial.math.lamar.edu/Extras/CheatSheets_Tables.aspx

Leave a Reply

Ad Blocker Detected

Dear user, Our website provides free and high quality content by displaying ads to our visitors. Please support us by disabling your Ad blocker for our site. Thank you!

Refresh